
B L O C K C H A I N
S E C U R I T Y

SMART CONTRACT
SECURITY ANALYSIS

PRESENTED TO
UNICE LAB Pte. Ltd

PREPARED BY
SAULIDITY

2023

1055 Rue Lucien-L'Allier
Montreal, QC H3G 3C4

audit@saulidity.com
www.saulidity.com

SECURITY
ASSESSMENT

SAULIDITY
2 0 2 3

saul id i ty.com
Saul id i ty
@Saul id i ty

Smart Contract
Audit

This report does not constitute financial advice, and Saulidity
is not accountable or liable for any negative consequences
resulting from this report, nor may Saulidity be held liable in
any way. You agree to the terms of this disclaimer by reading
any part of the report. If you do not agree to the terms, please
stop reading this report immediately and delete and destroy
any and all copies of this report that you have downloaded
and/or printed. This report was entirely based on information
given by the audited party and facts that existed prior to the
audit. Saulidity and/or its auditors cannot be held liable for
any outcome, including modifications (if any) made to the
contract(s) for the audit that was completed. No modifications
have been made to the contract(s) by the Saulidity team
unless it is indicated explicitly. The audit does not include the
project team, website, logic, or tokenomics, but if it does, it
will be indicated explicitly. The security is evaluated only on
the basis of smart contracts only. There were no security
checks performed on any apps or activities. There has not
been a review of any product codes. It is assumed by Saulidity
that the information and materials given were not tampered
with, censored, or misrepresented. Even if this report exists
and Saulidity makes every effort to uncover any security
flaws, you should not rely completely on it and should conduct
your own independent research. Saulidity hereby excludes all
liability and responsibility, and neither you nor any other
person shall have any claim against Saulidity, for any amount
or kind of loss or damage that may result to you or any other
person or any kind of company, community, association and
institution. Saulidity is the exclusive owner of this report, and
it is published by Saulidity. Without Saulidity's express written
authorization, use of this report for any reason other than a
security interest in the individual contacts, or use of sections
of this report, is forbidden.

DISCLAIMER

T
A

B
L

E

O
F

C

O
N

T
E

N
T

S

PAGE
00

SAULIDITY
AUDIT

TABLE OF
CONTENTS

Introduction01

Scope & Information

Appendix

04

10

12

Methodology

Executive Summary

Graphing

14

17

Analysis

Testing Standards

22

25

I N T R O D U C T I O N

I
N

T
R

O
D

U
C

T
I

O
N

Saulidity is a renowned blockchain security firm based in
Montreal QC that provides a suite of vital services, including
smart contract audits, penetration testing, node audits, and
blockchain project development.

In a market where confidence and trust are key, a genuine
project may simply increase its user base enormously with an
official audit performed by Saulidity. The security of
blockchain projects has never been more crucial than it is in
today's rapidly expanding digital landscape. In the face of
burgeoning technology, the integrity and security of
blockchain networks is paramount. The decentralized nature of
these networks, while presenting unparalleled opportunities
for transparency and disintermediation, also exposes them to
unique security threats.

Potential vulnerabilities in smart contracts, nodes, or
overall network design could be exploited by malicious actors,
leading to significant financial loss, data breaches, and
damage to reputation. As such, comprehensive security audits
and assessments are not just beneficial, but essential in
preventing such instances, ensuring the long-term success of
blockchain projects.

Saulidity applies extensive expertise and profound
understanding of blockchain technology to safeguard your
digital assets and maintain the robustness of your blockchain
projects to fortify your projects, secure your investments,
and empower you with the confidence that your blockchain
initiatives are secure and reliable.

The information in this report should be used to understand
the smart contract's risk exposure and as a guide to improving
the code by addressing the concerns that were discovered. For
a thorough understanding of the analysis, please read the
entire document.

PAGE
02

SAULIDITY
AUDIT

INTRO-
DUCTION

I
N

T
R

O
D

U
C

T
I

O
N

For a thorough understanding of the audit, please read the
entire document.

The goal of the audit was to find potential smart contract
security problems and vulnerabilities.

The information in this report should be used to understand
the smart contract's risk exposure and as a guide to improving
the smart contract's security posture by addressing the
concerns that were discovered.

During our audit, we conducted a thorough inquiry using
automated analysis and manual review approaches.

The security specialists did a complete study independently of
one another in order to uncover any security issues in the
contracts as comprehensively as feasible. For optimum security
and professionalism, all of our audits are undertaken by at
least two independent auditors.

The project's website, logic, or tokenomics have not been
vetted by Saulidity.

PAGE
03

SAULIDITY
AUDIT

INTRO-
DUCTION

S C O P E & I N F O

I
N

T
R

O
D

U
C

T
I

O
N

Essential Audit
Standard Audit
Premium Audit
Platform Pentest
Custom Audit

UniceTOKEN.sol
All inherited contracts

Available Saulidity audit packages:

We conducted a review on the following smart contract(s):

UNICE LAB Pte. Ltd engaged Saulidity to conduct an Essential
Audit of their smart contracts. The security assessment was
scoped to the smart contract with the contract address of
0xA0CF89eE581313D84d28409Eb6BB1D1F9B55d410 on the BSC.

The project's website, logic, or tokenomics have not been
vetted by Saulidity.

The security specialists did a complete study independently of
one another in order to uncover any security issues in the
contracts as comprehensively as feasible within the scope
chosen by the client.

During our audit, we conducted a thorough inquiry using
automated analysis and manual review approaches. The purpose
of this audit is to:

• Identify potential security issues with the smart contracts

PAGE
05

SAULIDITY
AUDIT

SCOPE &
INFORMATION

I
N

T
R

O
D

U
C

T
I

O
N

PAGE
06

SAULIDITY
AUDIT

SCOPE &
INFORMATION

Project Name UNICE LAB Pte. Ltd

Commit ID N/A

Fixed Coommit ID N/A

Contract Address 0xA0CF89eE581313D84d28409E
b6BB1D1F9B55d410

Report ID ulSAUL001 V1.0

Website unicelab.io

Code language Solidity

I
N

T
R

O
D

U
C

T
I
O

N

PAGE
07

SAULIDITY
AUDIT

SCOPE &
INFORMATION

We analyze smart contracts for both well-known and more
specific vulnerabilities.

Here are some of the most well-known vulnerabilities

ITEM DESCRIPTION

Default
Visibility

Functions and state variables visibility
should be set explicitly. Visibility levels

should be specified consciously.

Integer Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from overflows

and underflows.

Outdated
Compiler
Version

It is recommended to use a recent version
of the Solidity compiler.

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that they

have been tested thoroughly.

Unchecked Call
Return Value

The return value of a message call should
be checked.

Access Control
&

Authorization

Ownership takeover should not be
possible. All crucial functions should be

protected. Users could not affect data that
belongs to other users.

Selfdestruct
The contract should not be destroyed until

it has funds belonging to users.

Check-Effect-Interaction
CEI pattern should be followed if the code

performs any external call.

I
N

T
R

O
D

U
C

T
I
O

N

PAGE
08

SAULIDITY
AUDIT

SCOPE &
INFORMATION

ITEM DESCRIPTION

Default
Visibility

Functions and state variables visibility
should be set explicitly. Visibility levels

should be specified consciously.

Integer Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from overflows

and underflows.

Outdated
Compiler
Version

It is recommended to use a recent version
of the Solidity compiler.

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that they

have been tested thoroughly.

Unchecked Call
Return Value

The return value of a message call should
be checked.

Access Control
&

Authorization

Ownership takeover should not bepossible.
All crucial functions should be protected.
Users could not affect data that belongs to

other users.

Selfdestruct
The contract should not be destroyed until

it has funds belonging to users.

Check-Effect-Interaction
CEI pattern should be followed if the code

performs any external call.

I
N

T
R

O
D

U
C

T
I
O

N

PAGE
09

SAULIDITY
AUDIT

SCOPE &
INFORMATION

ITEM DESCRIPTION

Signature Unique Id
Signed messages should always have a
unique id. A transaction hash should not

be used as a unique id.

Shadowing State Variable State variables should not be shadowed.

Weak Sources of Randomness
Random values should never be generated

from Chain Attributes.

Incorrect Inheritance Order

When inheriting multiple contracts,
especially if they have identical functions, a

developer should carefully specify
inheritance in the correct order.

Calls Only to
Trusted Addresses

All external calls should be performed
only to trusted addresses.

Presence of
unused variables

The code should not contain unused
variables if this is not justified by design.

M E T H O D O L O G Y

I
N

T
R

O
D

U
C

T
I
O

N

PAGE
11

SAULIDITY
AUDIT

METHODOLOGY

Saulidity conducted a mixture of manual and automated
security evaluations. An Essential Audit package is carried
out using the following steps:

•Smart contract walkthrough
•Graphing out functionality and contract
logic/connectivity/functions
•Scanning of contracts for vulnerabilities
•Static Analysis

A P P E N D I X

I
N

T
R

O
D

U
C

T
I

O
N

PAGE
13

SAULIDITY
AUDIT

APPENDIX

Vulnerabilities can be divided into four threat levels:
Critical, High, Medium and Low. The classification is mainly
based on the impact, likelihood of utilization and other
factors.

Critical flaws can result in the loss of assets or the
alteration of data and are often simple to exploit.

High-level vulnerabilities are challenging to exploit, but
they can have a big influence on how smart contracts are
executed, such as giving the public access to key features.

Although medium-level vulnerabilities should be fixed, they
generally cannot result in the loss of assets or the
manipulation of data.

Low-level and Lowest/Code Style/Optimization flaws are
typically caused by code fragments that are out-of-date,
useless, etc. and cannot significantly affect execution.

E X E C U T I V E
S U M M A R Y

E
X

E
C

U
T

I
V

E

S
U

M
M

A
R

Y

PAGE
15

SAULIDITY
AUDIT

EXECUTIVE
SUMMARY

0
CRITICAL SEVERITY

-

0
HIGH SEVERITY

-

0
MEDIUM

-

0
LOW

-

0
LOWEST/ CODE STYLE/ OPTIMIZED PRACTICE

-

PAGE
16

SAULIDITY
AUDIT

EXECUTIVE
SUMMARY

SEVERITY FOUND

Critical 0

High 0

Medium 0

Low 0

Lowest / Code Style /
Optimized Practice 0

ACCORDING TO THE ANALYSIS, THERE ARE NO CRITICAL
SEVERITY SECURITY VULNERABILITIES.

ALL ISSUES FOUND DURING ANALYSIS WERE REVIEWED, AND
FALSE POSITIVES WERE ELIMINATED. THE FINDINGS ARE
PRESENTED IN THE ANALYSIS SECTION OF THE REPORT.

E
X

E
C

U
T

I
V

E

S
U

M
M

A
R

Y

G R A P H I N G

G
R

A
P

H
I
N

G

PAGE
18

SAULIDITY
AUDIT

GRAPHING

Inheritance is a fundamental concept in object-oriented programming
(OOP) that allows a class (referred to as a child or derived class)
to inherit characteristics and functionalities from another class
(known as a parent or base class). In the context of smart contracts
in Solidity, inheritance is used to establish relationships between
contracts, enabling code reuse, responsibility separation, and
promoting modularity.

A call graph of a smart contract provides a visual representation of
the function calls and dependencies within the contract. It
illustrates the flow of execution and the relationships between
functions. The call graph displays nodes representing individual
functions and edges representing the calls made between them.The call
graph allows for a comprehensive view of the contract's function
hierarchy, enabling the identification of critical functions, entry
points, and external dependencies.It highlights the paths of
execution, including any loops or recursive calls, which can be
crucial for understanding the contract's behavior and potential
risks.

A contract interaction graph provides a visual representation of the
relationships and interactions between different smart contracts
within an ecosystem. It shows how contracts interact with each other
through function calls, events, and state variables. Readers can
visualize the relationships and dependencies between contracts,
ensuring a comprehensive analysis of the smart contract ecosystem.The
graph can be used to highlight potential security risks,
communication challenges, or optimization opportunities arising from
the contract interactions.

G
R

A
P

H
I
N

G

PAGE
19

UNICE

ERC20

ERC20Burnable

Ownable

TokenRecover

Context

IERC20

IERC20Metadata

IUniswapV2Factory IUniswapV2Pair

IUniswapV2Router01

IUniswapV2Router02

SAULIDITY
AUDIT

GRAPHING
INHERITANCE

G
R

A
P

H
I
N

G

PAGE
20

UNICE

IUniswapV2Router02TokenRecover

Legend

<Constructor>

_updateRouterV2

initializeTokenTimelocks

_mint

_transferOwnership

<Receive Ether>

decimals

_setAMMPair

IUniswapV2Router02

IUniswapV2Factory

address

factory

WETH

setAMMPair

_beforeTokenTransfer

_beforeTokenTransfer

_afterTokenTransfer

_afterTokenTransfer

transfer

validateLockup

transfer

transferFrom

transferFrom

Internal Call
External Call

Defined Contract
Undefined Contract

SAULIDITY
AUDIT

GRAPHING
CALL

G
R

A
P

H
I
N

G

PAGE
21

Legend

UNICE

TokenRecover

IUniswapV2Router02

ERC20

IERC20

IERC20Metadata

Context

ERC20Burnable

Ownable

IUniswapV2Factory

IUniswapV2Pair

IUniswapV2Router01

Internal Call
External Call

Defined Contract
Undefined Contract

SAULIDITY
AUDIT

GRAPHING
INTERACTION

A N A L Y S I S

C
Y

C
L

O
M

A
T

I
C

C

O
M

P
L

.

PAGE
23

SAULIDITY
AUDIT

CYCLOMATIC
COMPLEXITY

In the scope of this audit, after analyzing the cyclomatic
complexity of the functions present in the contract, we can see
that the majority of the functions have a complexity of 1 to 3.

This indicates that the functions in the contract are relatively
simple and easy to understand. A cyclomatic complexity of 1 to 3
suggests a limited number of decision points and loops, which
helps reduce the overall complexity of the contract.This
facilitates contract maintenance and decreases the risk of errors
related to excessive complexity.

It is important to note that cyclomatic complexity alone does not
guarantee absolute security of the contract.

A
N

A
L

Y
S

I
S

PAGE
24

SAULIDITY
AUDIT

ANALYSIS

Issue: -

Severity: -

Location: General

Description: The owner has control over these functions:

T E S T I N G
S T A N D A R D S

T
E

S
T

I
N

G

S
T

A
N

D
A

R
D

S

PAGE
26

SAULIDITY
AUDIT

TESTING
STANDARDS

The goal of the audit was to find any potential smart contract
security problems and vulnerabilities. The information in this
report should be used to understand the smart contract's risk
exposure and as a guide to improving the smart contract's security
posture by addressing the concerns that were discovered.

The blockchain platform is used to deploy and execute smart
contracts. The platform, its programming language, and other smart
contract-related applications may all have vulnerabilities that
may be exploited. As a result, the audit cannot completely ensure
the audited smart contract(s) explicit security on its own. Audits
can't make warranties on security of the code. It also cannot be
deemed a complete adequate assessment of the code's utility and
safety, bug-free status, or any statements of the smart contract.
While we did our best in completing the study and publishing this
report, it is crucial to emphasize that you should not rely only
on it; we advocate all projects doing many independent audits and
participating in a public bug bounty program to assure smart
contract security.

Gather all relevant data.
Perform a preliminary visual examination of all documents
and contracts.
Find security holes with specialist tools & manual review
with independent experts.
Create and distribute a report.

saul id i ty.com
Saul id i ty
@Saul id i ty

Smart Contract
Audit

